Step of Proof: primrec_add
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
primrec
add
:
T
:Type,
n
,
m
:
,
b
:
T
,
c
:({0..(
n
+
m
)
}
T
T
).
primrec(
n
+
m
;
b
;
c
) = primrec(
n
;primrec(
m
;
b
;
c
);
i
,
t
.
c
(
i
+
m
,
t
))
latex
by ((((RepeatFor 2 ((D 0)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat
C
3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (NatInd (-1)))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
m
:
C1:
3.
b
:
T
C1:
4.
c
: {0..(0+
m
)
}
T
T
C1:
primrec(0+
m
;
b
;
c
) = primrec(0;primrec(
m
;
b
;
c
);
i
,
t
.
c
(
i
+
m
,
t
))
C
2
:
C2:
1.
T
: Type
C2:
2.
n
:
C2:
3. 0 <
n
C2:
4.
m
:
,
b
:
T
,
c
:({0..((
n
- 1)+
m
)
}
T
T
).
C2: 4.
primrec((
n
- 1)+
m
;
b
;
c
) = primrec(
n
- 1;primrec(
m
;
b
;
c
);
i
,
t
.
c
(
i
+
m
,
t
))
C2:
5.
m
:
C2:
6.
b
:
T
C2:
7.
c
: {0..(
n
+
m
)
}
T
T
C2:
primrec(
n
+
m
;
b
;
c
) = primrec(
n
;primrec(
m
;
b
;
c
);
i
,
t
.
c
(
i
+
m
,
t
))
C
.
Definitions
False
,
A
,
A
B
,
i
j
,
P
Q
,
t
T
,
x
:
A
.
B
(
x
)
,
,
Lemmas
ge
wf
,
nat
properties
,
int
seg
wf
,
nat
wf
origin